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Abstract — This paper aims to reconstruct 3D map based on 

environmental 3D cloud information of landmarks. A Modified 

Iterative Closest Point (MICP) algorithm is proposed to apply 

for merging point clouds through a transformation matrix with 

values updated using the robot’s position. In particular, 

reconstruction of 3D map is performed based on the location 

information of landmarks in an indoor environment. In 

addition, the transformation matrix obtained using the MICP 

algorithm will be up-dated again whenever the error among the 

point clouds is greater than one setup threshold. The result is 

that the environmental 3D map is reconstructed more 

accurately compared using the MICP. The experimental results 

showed that the effectiveness of the proposed method in 

improving the quality of reconstructing 3D cloud map. 

 
Index Terms — RGB-D cameras, transformation matrix, 3D 

point clouds, MICP algorithm, 3D map reconstruction.  

 

I. INTRODUCTION 

The problem of reconstructing 3D maps based on RGB-D 

cameras has gradually attracted researchers in recent years 

[1], [2]. Compared with 2D maps, 3D maps contain more 

valuable environmental information, especially there is 

information of route planning [3]-[5]. To obtain the whole 

information of a 3D map, the most important problem is to 

compute the variability of point clouds with different 

perspectives. The procedure for calculating the coordinate 

system transformation parameters is called Motion 

Estimation (ME). To solve this problem, researchers have 

proposed different solutions [6]-[8] and one of the most 

commonly used solutions is the ICP algorithm [9]. This 

algorithm effectively gathers more precise point clouds, but 

still has some limitations. In addition, the ICP algorithm is a 

kind of point-to-point registration method, in which if there 

is an increase in the number of points, the efficiency of this 

algorithm decreases obviously. Moreover, the initial position 

of the point plays an important role in the registration process, 

particularly the initial position of the point is inconsistent, it 

will cause the registration result related to calculation of local 

optimization and seriously affect the accuracy of this 

algorithm. 

According to the characteristics of the ICP algorithm, 

researchers applied to develop researches and proposed 

various innovative algorithms. In particular, Izadi presented 

a real-time 3D reconstruction, in which an interaction system 
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combined with GPU technology to improve operational 

efficiency [10]. However, this method is highly demanded 

about hardware performance such as big memory, and so it is 

impossible to complete the reconstruction of large-scale 

scene. In [11], authors proposed an innovative ICP algorithm 

based on the point-to-plane, in which computation speed 

increased. On the other hand, this method is difficult to 

converge and to be stable when the surface curvature has a 

large change. Mitra proposed an improved ICP algorithm 

based on feature point connection [12]. This method 

significantly improved the operational performance 

compared with the original ICP algorithm. However, due to 

the presence of exceptions, the registration accuracy of this 

algorithm is poor. In another research, Gibson Hu represented 

the RANSAC algorithm to solve the ICP model based on the 

corresponding points and features for improving the accuracy 

and robustness of the ICP algorithm [13]. However, the 

similarities randomly selected in the ICP model and this made 

the local cloud merging results, and so it did not meet the 

global map's requirements. Article [14] proposed to optimize 

the global map using a General Graph Optimization (G2O) 

framework combined with key frames for reconstructing the 

3D map. Authors tested the performance of their proposed 

algorithm in six public datasets. The results demonstrate that 

the algorithm is feasible and effectively. 

In recent years, approaches to RGB-D SLAM have been 

entirely focused on using raw depth [15] or combining depth 

and RGB information [16], [17] to predict camera movement. 

Combination techniques have generally been shown to be 

more robust due to including both visual and geometric 

information for motion estimation [18]. However, with 

processing complex indoor environments, two scenarios can 

happen and it makes the traditional RGB-D algorithm to be 

able to have errors. In particular, where there are expansive 

spatial scenes, little information about depth, flat scenes a lot 

of geometrical structure. This is why these techniques have 

limitations for reconstructing 3D images of office-style 

environments. 

Kinect RGB-D systems has been used to replace stereo 

camera systems for robot localization [19]. This type of the 

RGB-D not only produces 3D images with the high precision 

but also enables calculation of fast machining. In addition, it 

is much cheaper than a 3D sensor with the same function and 

easy to install for use. That is why algorithms based on the 

RGB-D have been applied for determining spaces in motion 
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as well as locations of autonomous robots in recent years [20], 

[21]. One problem of this RGB-D is that its depth information 

is often noisy. Therefore, if a robot is equipped with the 

Kinect for moving a long distance, the cumulative error with 

robot localizations during moving increases over time [22]. 

There have been many proposed methods such as the 

consideration of noise characteristics, updating the distance 

dependence to reduce this error as well as improving the 

accuracy of 3D mapping [23]-[25]. 

In this paper, we propose an MICP algorithm based on the 

calculation of the robot's position and 3D data from the point 

clouds. Robot position in 3D space will be calculated based 

on landmarks in the indoor environment. These landmarks are 

identified in the previous coordinates through the process of 

identifying and collecting landmarks. In addition, the 3D data 

from the point clouds helps to calculate the deviation angle 

between 2 frames, from which it is possible to calculate the 

deviation angle of the robot in space. Finally, a 

transformation matrix will be computed based on this 

information and make the cloud merging process more 

accurate. 

 

II. THE PROPOSED 3D MAP RECONSTRUCTION ALGORITHM 

A. RGB-D Mapping Framework 

Environmental 3D mapping algorithm consists of two 

main and independent processes as shown in Fig. 1. In the 

first step, data is collected by the RGB-D camera system 

while the robot is in motion. The collected data includes the 

point clouds and the robot's locations is determined based on 

the locations of the landmarks in the environment. In the 

second step, the data is processed to reconstruct the 3D 

environment map. 

 

 

Fig. 1. Overview of the proposed 3D map reconstruction algorithm. 

 

In order to reconstruct the 3D map, it is necessary to 

capture in depth images of an indoor environment and the 

locations where they were collected. Before starting to collect 

any data, the robot must be localized in the 2D map obtained 

earlier. This means that an initial exploration must be 

performed, including the identification of landmarks in a 

natural environment [30] and the positioning of these 

landmarks in a 2D environment. Once data collection has 

started, two different processes run in parallel. Figure 1 shows 

how the Kinect camera collects data and manages the robot's 

localization for providing the robot's location for each point 

cloud.  

B. Cloud’s Filtering 

Once all data is saved, reconstructing 3D map is begun by 

processing these data to produce the final 3D map. This is 

done in two main processes: Firstly, every cloud is processed 

to reduce its size; Secondly, clouds are added to the final map 

by registering them. In practice, each cloud image is obtained 

with the Kinect has about 300000 points. The cloud with the 

large will take more time for calculation and a lot of memory 

for saving. For this reason, filtering the cloud image will 

reduce resource usage and computation time during 

processing 3D cloud images. The process of filtering consists 

of four steps: Filtering; Reducing pattern; Removing 

unnecessary points; and Reconstructing [26]. 

Pass Through filter: This filter is used to set a depth limit 

in the cloud. The Kinect has a working range of 3.5 meters. 

However, it is actually obtained points further than this 

distance threshold. We have found that in order to perform 

accurate reconstruction, it is necessary to use points farther 

than 3.5 meters, although the accuracy of the depth will be 

decreased as the distance between the points and the Kinect 

will be increased. For this reason, a Pass Through filter 

should be applied for removing any point that is more than 6 

meters deep from the Kinect. 

Down Sampling: Two points in a point cloud captured 

from the Kinect can have a minimum distance of a few 

millimeters. In the case of mapping environments, its area is 

about some square meters, it is unnecessary to obtain the 

minimum distance with such accuracy. It is acceptable to 

reduce the accuracy of the reconstructed 3D image by 

reducing the size of all point clouds and significantly both 

computation time and memory usage. In particular, the Voxel 

Grid [27] represented how to reduce the number of points by 

dividing a point cloud in the "voxels" boxes of 5 cm-sided 

cubes by the desired width. Then all points in a box are 

reduced into a single point corresponding to their centers. In 

this way, it is possible to set the minimum distance between 

points with the desired accuracy for reducing the number of 

points of a point cloud. 

Remove Outliers: Point clouds from the Kinect can have 

measurement errors that can produce sparse outliers. Such 

points can lead to errors in the surface normalization of the 

local point cloud. Calculations of this type often require 

investigating a certain number of neighborhood points in an 

adjacent area of one point, so it is important to ensure that the 

neighborhood points are correct. Furthermore, removing 

some unnecessary points contributes to a reduction in 

processing time, although its effect in this algorithm is less 

important compared to the two processes as shown above. 

The method based on statistical analysis on the 

neighborhoods of each point was applied to eliminate outliers 

[28]. The average distance from each point to all of its 

neighborhoods is calculated. With the Gaussian distribution, 

mean and standard deviation, all points have the average 

distance outside a certain range are called outliers and they 

will be removed from the data set. In this study, 50 

neighborhood points were used for each point to analyze its 

state and it will remove all points with distances greater than 

the standard deviation of the average distance to the analyzed 

point. 

Surface Reconstruction: Surface reconstructing is used to 

improve the elimination of data anomalies. It is based on the 

Moving Least Squares (MLS) algorithm [28]. In particular, 

the MLS provides a reconstructed surface for a given set of 

points by interpolating higher-order polynomials among 

rounded local neighborhoods. Smoothing and resampling a 
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noisy cloud allows to more accurately estimate of surfaces 

and curvature. Such estimates are further used to merge point 

clouds together.  

C. Modified ICP Algorithm for 3D Point Cloud 

Reconstruction 

In theory, positioning the robot would allow to reconstruct 

the entire map by applying translations and rotations to all 

point clouds. After the map initialization for each new cloud, 

we merge it with the previous map and decide if such merging 

is good enough to insert it into the map. This process will 

allow to consider the quality of the newly merged cloud based 

on the Fitness Score (FC) value. 

The MICP algorithm is a well-known process that aligns 

two sets of point clouds by minimizing the Euclidean distance 

between their corresponding points [9]. It finds the closest 

pairs of 3D points in the source and target which are identifies 

as objects if their distance is less than a specified distance. 

Therefore, it estimates a transformation that minimizes the 

distance between them and the iterations until the difference 

between consecutive transformations is less than the defined 

limit or the maximum iterations is reached. However, the 

MICP can have some problems due to its convergence is at 

the local minimum. Therefore, it can produce poor merging 

results and in order to improve this one, it may need large 

iterations. The MICP also returns a parameter, called the 

fitness score, that provides information about the quality of 

adjusting. The fitness score corresponds to the error of 

distance between clouds adjusted after the merging process. 

This parameter will be useful to decide under which cases of 

adjustment is good enough for inserting it into the map. 

After adjusting the new cloud using the MICP as shown in 

Fig. 2, this c merged loud will be performed the second 

adjustment, if the result is not accepted. In this case, an MICP 

is applied to get better first prediction than that of the ICP. 

After applying the second MICP, the result will be used to 

decide whether or not to use the new cloud on the map. Fig. 

2 shows the structure of cloud merging process using the 

MICP method. 

 

 

Fig. 2. The process of the 3D map rescontruction based on merging point 

clouds. 

1) Map Initialization 

The first point cloud and its location are used to initialize 

the first map. This process applies a transformation matrix to 

shift the cloud from its local reference position to its global 

reference position. PK
i is the ith point cloud in its local 

reference space and PG
i is the corresponding point cloud in 

the global reference space. At this time, the cloud is ready to 

be set as the first map so that any accepted new cloud will be 

inserted into. Fig. 3 shows steps for performing according to 

this method. 

 

 
Fig. 3. Representation of the block diagram for the initial process of the 

first map. 

 

2) Building a new cloud 

For a new cloud merging process, a new cloud is obtained 

after filtering and the corresponding global position of the 

camera system is collected. With using this information, this 

cloud can be transformed into a global reference. In order to 

combine different clouds and create a common map, all of 

them must be in the same reference. 

 

 

Fig. 4. The coordinates of the Kinect and Robot. 

 

The obtained point clouds are referenced to the Kinect 

camera's coordinate RK. Its original point OK is at the camera 

location and its XK, YK and ZK axes are determined as shown 

in Fig. 4. In particular, it corresponds to a moving coordinate 

system during the robot movement for acquisition of different 

clouds. In addition, the robot's reference system RR, as shown 

in Fig. 4, is a mobile system. Therefore, to adjust the cloud 

with the robot's reference system, the transformation TR
K is 

applied to transform the cloud with the Kinect coordinate 

system into the Robot coordinate system using the following 

formula: 

 

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 
 
−

 =
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 
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When the cloud is in the appropriate local reference 

system, it is necessary to transform the cloud into the global 

reference system similar to other clouds. RG is the fixed 

coordinate system and has the origin and direction as RR when 

the position of the robot is (X0, Y0, θ0) = (0,0,0). In practice, 

the robot moves around the floor, so the robot has the 

unchanged coordinate ZG and the plane (XG - YG) with the 

camera system is considered as not to move to the RR. Fig. 5 

shows the relationship between the coordinates of RG and RR. 

 

 

Fig. 5. Representation of the coordinates of RG and RR. 

 

To transform the reference cloud from the coordinate 

system RR to the global coordinate system RG, the TG
R 

transformation is described as follows: 
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 
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Fig. 6. The coordinates of the robot and surface landmarks. 

 

The coordinates (XG, YG) of the robot in the plane are 

determined by the position of 3 landmarks in that plane [29]. 

In Fig. 6, assuming that the robot moves in the flat space 

𝑂XGYG with the undefined coordinate (XG, YG). Moving 

space is assumed to be an absolute plane for obstacles chosen 

to be landmarks. These obstacles have distinctive features 

from other landmarks [30] and their positions are determined 

in space A(XA, YA), B(XB, YB), and C(XC, YC), in which the 

distances from the robot to the landmarks are dA, dB, dC, 

respectively. 

To find two coordinate components XG and YG, it is 

necessary to find the solution of the system, including 3 

equations (3), (4), (5). To solve this system of the equations, 

it is necessary to determine two important parameters, the 

coordinates of the landmarks and the distance from the robot 

to these landmarks. In addition, the SURF landmark 

recognition algorithm is employed [31] to identify landmarks 

on the way of the robot’s movement. This algorithm allows 

to find feature points on the landmark appearing on the image 

frame collected from the camera installed with the robot and 

matches the feature points of the landmarks stored in the 

library. When the robot wants to locate its position through 

landmarks, the closest landmarks will be detected and then 

they are used as the positioning reference. After finding the 

landmarks in the image frame, the distances from the robot to 

the corresponding landmarks dA, dB, dC are determined based 

on the depth image obtained from the Kinect camera. The 

coordinates of the landmarks and the distance from the robot 

to the corresponding landmark will be used to determine the 

current coordinates of the robot using the following 

equations: 

 

( ) ( ) 222
AAA dyyxx =−+−    (3) 

 

( ) ( ) 222
BBB dyyxx =−+−    (4) 

 

( ) ( ) 222
CCC dyyxx =−+−    (5) 

 

In addition, the rotation angle θG of the robot around the 

OGYG axis is determined based on the calculation of the 

rotation angle θ between the point clouds. Assume that there 

are 2 point clouds A and B, the covariance matrix, H is 

calculated using the following equation: 

 

1 1

1 1
T

N Ni i

i iN N= =

  
= − −  

  
 H A A B B   (6) 

 

There are some ways to find the optimal rotation between 

point clouds. The Singular Value Decomposition (SVD) [32] 

method is considered as “a powerful magic wand” in linear 

algebra to determine the rotation matrix R as follows: 

 

  ( )SVD=U,S,V H   (7) 

 

= T
R VU    (8) 

 

Therefore, the rotation angle can be extracted from the 

matrix R as follows: 

 

( )tana = 21 11R ,R   (9) 

 

The rotation angle of the robot in the global space at the ith 

is calculated as follows: 

 

( ) ( )1 ( )G Gi i i  = − +   (10) 

 

Finally, the cloud transformation matrix obtained from the 

Kinect in the global reference space will be calculated using 

the following equation: 

 

=G G R
K R KT T .T    (11) 
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3) Decision of the inclusion 

In this final step, the cloud merging process will decide 

whether or not to insert the converted cloud into the 3D map. 

To perform this one, the fitness score parameter given by the 

MICP is used. From experience, we recognize that clouds 

with the fitness score less than 0.01 are adequate for the map 

to be merged. 

During a cloud merging process, overlapping areas 

between point clouds for adjusting are used and such overlap 

areas need to appear at all times. However, this is impossible 

to perform any time due to appearing accepted clouds and the 

common area of the previous clouds for reconstruction of 3D 

cloud map. Therefore, for improving this one, we decided to 

add to the 3D cloud map a cloud with an unsatisfactory fitness 

score if the last 3 clouds fail instead of using the cloud 

transformed by using the MICP. In particular, this cloud is 

inserted into the map by adding its points to the 3D map. 

If a new cloud is added, all of its points will be added to 

the previous map. In this case, the overlapping areas will be 

denser due to containing two points at the estimated same 

location. In practice, it is unnecessary to have such density in 

the 3D cloud map and it can also decrease the accuracy of the 

map. Hence, a filtering process is necessary to be able to 

maintain the appropriate density in the map. The map was re-

sampled using the Voxel grid, in which setting its size to 2 

cm. Therefore, the map is filtered with the parameters similar 

to filtering the new cloud before added. 

 

III. RESULTS AND DISCUSSION 

A. Description of Mobile Platform 

In this study, the hardware system architecture of the 

mobile robot platform consists of the Kinect RGB-D 

connected to a PC and other processing equipment for data 

processing and control of the robot. After navigating to 

control the differential robot, velocity signals from the PC 

through the Driver controller are sent to the left and right 

wheels as shown in Fig. 7. Finally, all the mappings and the 

localization process are displayed on the PC screen during the 

robot's movement. 

 
Fig. 7. Block diagram of the hardware system of the mobile platform. 

 
Fig. 8. Robot model with the Kinect RGB-D and PC. 

 

The robot with collecting environmental images is 

controlled via Bluetooth connection. The robot will move 

around a room to collect images for recognizing obstacles in 

the surrounding environment. The Kinect camera is installed 

with the front of the robot and it is setup a distance of 50 cm 

from the floor for collect almost obstacle images during the 

robot movement as shown in Fig. 8. In the hardware system, 

the rotor is installed with a laptop configured to a Core i3 

processor, the CPU speed is 2.0GHz, the capacity of the 

integrated RAM in the laptop is 4 Gbyte. The Kinect camera 

and Arduino Nano are connected to the laptop by using a USB 

port for collect RGB images and corresponding depth images. 

B. Results of Pre-processing Cloud Images 

By preforming these steps, the number of points in the 

point cloud is significantly reduced. In this research, we 

propose the use of point clouds with less than 50000 points. 

This is usually obtained after filtering. However, in some 

cases, the point clouds still have a larger size compared to the 

setup size. In this case, the second filtering will be performed 

for reducing suitable points. This reduction will speed up the 

time of adjusting and this can avoid errors and obtain the 

adequate accuracy. 

 

 
(a) 

 
(b) 

Fig. 9. Representation of processing clouds: 

(a) Cloud image before filtering; (b) Cloud image after filtering. 
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C. Results of Determining the Robot Coordinate based on 

Landmarks  

In order to determine the position of the robot, the most 

important step is to identify landmarks during movement. In 

particular, the landmarks are selected to calculate the robot 

position as shown in Fig. 10. In practice, the sample images 

may have different dimensions as well as details. In addition, 

each landmark with the coordinate is placed in a fixed 

position in the robot's movement space. 

 

  

(a) Landmark image with two red 

fire extinguishers 

(b) Landmark image with one black 

box 

  

(c) Landmark image with blue box 
(d) Landmark image with natural 

obstacles 

Fig. 10. Landmark image chosen for identification. 

 

In the robot position search algorithm, it is necessary to 

detect at least three landmarks. This means that when the 

three landmarks are identified, the center position of the 

landmark in the image frame captured from the camera 

system is determined. Therefore, this landmark information 

is used to determine the distance from the robot to the 

corresponding markers and the calculated results are 

compared with the actual measurement results. In particular, 

Fig. 11 depicts the landmarks obtained from the camera at 

different locations and the landmarks highlighted in blue 

using the SURF method. Therefore, according to the accurate 

calculation, the corresponding robot position will be returned 

close to the predicted result. 

 

(a) 

 
(b) 

 

(c) 

Fig. 11. Three landmarks captured from the camera system equipped 

with the robot at three different places: 
(a) Three landmark positions at 1st place (Case-1); 

(b) Three landmark positions determined at 2nd place (Case-2); 

(c) Three landmark positions determined at 3rd place (Case-3). 
 

Table I shows the different positions of the robot during its 

movement in 2D space and each position determined includes 

a standard value and another value is calculated using (3), (4), 

(5) for evaluating calculation errors under standard lighting 

conditions. While Table II shows the results of positioning 

the robot under low light conditions. Therefore, the SURF 

algorithm for landmark recognition is less dependent on the 

luminance change on the landmark image. With this main 

factor, when the landmarks are within the camera's visible 

area, the light intensity of the landmark images does not really 

affect the robot's positioning.

TABLE I: POSITIONS OF THE ROBOT DETERMINED USING THE LOCALIZATION ALGORITHM IN THE STANDARD LIGHT CONDITION 

No. (XA,YA) dA (XB,YB) dB (XC,YC) dC 
[Calculation position, 

standard position] 

1 (450,1205) 2700 

2030 

(150,1065) 4050 

4045 

(300,903) 4400 

4450 

[294.781, 356.166] 

[297.513, 337.561] 

2 (450,1205) 3900 

3890 

(150,1065) 4400 

4420 

(300,903) 4400 

4442 

[246.527, 504.365] 

[292.938, 506.473] 

3 (600,1050) 3050 
2920 

(300, 900) 3000 
2980 

(450,1200) 3000 
2985 

[473.689, 244.784] 
[438.389, 298.139] 
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TABLE II: POSITIONS OF THE ROBOT DETERMINED USING THE LOCALIZATION ALGORITHM IN THE LOW LIGHT CONDITION 

No. (XA,YA) dA (XB,YB) dB (XC,YC) dC 
[Calculation position, 

standard position] 

1 (450,1205) 2700 

2030 

(150,1065) 4050 

4045 

(300,903) 4400 

4450 

[294.781, 356.166] 

[297.513, 337.561] 

2 (450,1205) 3900 
3890 

(150,1065) 4400 
4420 

(300,903) 4400 
4442 

[246.527, 504.365] 
[292.938, 506.473] 

3 (600,1050) 3050 

2920 

(300, 900) 3000 

2980 

(450,1200) 3000 

2985 

[473.689, 244.784] 

[438.389, 298.139] 

 

D. Experimental results of 3D mapping 

These Practical experiments we show how Kinect sensor 

can build 3D maps for made-up environment with dimensions 

4800 mm x 4800 mm shown in Fig. 12. In this project Mobile 

robot is navigated manually by using Smartphone. This 

project is used Kinect with mobile robot for mapping by 

connecting Kinect to laptop. We control the mobile robot 

slowly on itself inside environment to start mapping.  
 

 
Fig. 12. The environment for building maps. 

 

During mapping, if an error occurs, the map reconstruction 

system of the robot displays a warning and immediately stops 

the mapping. Therefore, the user should control the robot so 

that it can return back its correct original position. We have 

found that the error usually occurs when there are many areas 

without texture or blur motion as shown in Fig. 13. In 

particular, the blue line in the reconstructed map image shows 

the robot's path during data collection. The image of the 

experimental environment map from different angles shows 

that the 3D model of the indoor environment with good 

quality is successfully reconstructed. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13. 3D map of the indoor environment: 

(a) Result of the 3D mapping of room at view 1; 

(b) Result of the 3D mapping of room at view 2; 
(c) Result of the 3D mapping of room at view 3; 

(d) Result of the 3D mapping of room at view 4. 
 

IV. CONCLUSION 

In this paper, we have presented a MICP algorithm that 

improved the quality of reconstructing 3D maps using the 

Kinect cameras. Our approach used information from the 3D 
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point clouds and the position of the robot in its moving 

environment to compute the transformation matrix for the 

merging process of clouds. By evaluating the error of 

merging the point clouds during the 3D map reconstruction, 

we could eliminate point clouds which are not suitable for 

inserting into the 3D map. Finally, we reconstructed the 3D 

map with the high reliability of the indoor environment, and 

it can be used for robot localization, navigation and route 

planning. 
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