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An MICP Algorithm for 3D Map Reconstruction Based
on 3D Cloud Information of Landmarks
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Abstract — This paper aims to reconstruct 3D map based on
environmental 3D cloud information of landmarks. A Modified
Iterative Closest Point (MICP) algorithm is proposed to apply
for merging point clouds through a transformation matrix with
values updated using the robot’s position. In particular,
reconstruction of 3D map is performed based on the location
information of landmarks in an indoor environment. In
addition, the transformation matrix obtained using the MICP
algorithm will be up-dated again whenever the error among the
point clouds is greater than one setup threshold. The result is
that the environmental 3D map is reconstructed more
accurately compared using the MICP. The experimental results
showed that the effectiveness of the proposed method in
improving the quality of reconstructing 3D cloud map.

Index Terms — RGB-D cameras, transformation matrix, 3D
point clouds, MICP algorithm, 3D map reconstruction.

I. INTRODUCTION

The problem of reconstructing 3D maps based on RGB-D
cameras has gradually attracted researchers in recent years
[1], [2]. Compared with 2D maps, 3D maps contain more
valuable environmental information, especially there is
information of route planning [3]-[5]. To obtain the whole
information of a 3D map, the most important problem is to
compute the variability of point clouds with different
perspectives. The procedure for calculating the coordinate
system transformation parameters is called Motion
Estimation (ME). To solve this problem, researchers have
proposed different solutions [6]-[8] and one of the most
commonly used solutions is the ICP algorithm [9]. This
algorithm effectively gathers more precise point clouds, but
still has some limitations. In addition, the ICP algorithm is a
kind of point-to-point registration method, in which if there
is an increase in the number of points, the efficiency of this
algorithm decreases obviously. Moreover, the initial position
of the point plays an important role in the registration process,
particularly the initial position of the point is inconsistent, it
will cause the registration result related to calculation of local
optimization and seriously affect the accuracy of this
algorithm.

According to the characteristics of the ICP algorithm,
researchers applied to develop researches and proposed
various innovative algorithms. In particular, Izadi presented
a real-time 3D reconstruction, in which an interaction system
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combined with GPU technology to improve operational
efficiency [10]. However, this method is highly demanded
about hardware performance such as big memory, and so it is
impossible to complete the reconstruction of large-scale
scene. In [11], authors proposed an innovative ICP algorithm
based on the point-to-plane, in which computation speed
increased. On the other hand, this method is difficult to
converge and to be stable when the surface curvature has a
large change. Mitra proposed an improved ICP algorithm
based on feature point connection [12]. This method
significantly improved the operational performance
compared with the original ICP algorithm. However, due to
the presence of exceptions, the registration accuracy of this
algorithm is poor. In another research, Gibson Hu represented
the RANSAC algorithm to solve the ICP model based on the
corresponding points and features for improving the accuracy
and robustness of the ICP algorithm [13]. However, the
similarities randomly selected in the ICP model and this made
the local cloud merging results, and so it did not meet the
global map's requirements. Article [14] proposed to optimize
the global map using a General Graph Optimization (G20)
framework combined with key frames for reconstructing the
3D map. Authors tested the performance of their proposed
algorithm in six public datasets. The results demonstrate that
the algorithm is feasible and effectively.

In recent years, approaches to RGB-D SLAM have been
entirely focused on using raw depth [15] or combining depth
and RGB information [16], [17] to predict camera movement.
Combination techniques have generally been shown to be
more robust due to including both visual and geometric
information for motion estimation [18]. However, with
processing complex indoor environments, two scenarios can
happen and it makes the traditional RGB-D algorithm to be
able to have errors. In particular, where there are expansive
spatial scenes, little information about depth, flat scenes a lot
of geometrical structure. This is why these techniques have
limitations for reconstructing 3D images of office-style
environments.

Kinect RGB-D systems has been used to replace stereo
camera systems for robot localization [19]. This type of the
RGB-D not only produces 3D images with the high precision
but also enables calculation of fast machining. In addition, it
is much cheaper than a 3D sensor with the same function and
easy to install for use. That is why algorithms based on the
RGB-D have been applied for determining spaces in motion
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as well as locations of autonomous robots in recent years [20],
[21]. One problem of this RGB-D is that its depth information
is often noisy. Therefore, if a robot is equipped with the
Kinect for moving a long distance, the cumulative error with
robot localizations during moving increases over time [22].
There have been many proposed methods such as the
consideration of noise characteristics, updating the distance
dependence to reduce this error as well as improving the
accuracy of 3D mapping [23]-[25].

In this paper, we propose an MICP algorithm based on the
calculation of the robot's position and 3D data from the point
clouds. Robot position in 3D space will be calculated based
on landmarks in the indoor environment. These landmarks are
identified in the previous coordinates through the process of
identifying and collecting landmarks. In addition, the 3D data
from the point clouds helps to calculate the deviation angle
between 2 frames, from which it is possible to calculate the
deviation angle of the robot in space. Finally, a
transformation matrix will be computed based on this
information and make the cloud merging process more
accurate.

Il. THE PROPOSED 3D MAP RECONSTRUCTION ALGORITHM

A. RGB-D Mapping Framework

Environmental 3D mapping algorithm consists of two
main and independent processes as shown in Fig. 1. In the
first step, data is collected by the RGB-D camera system
while the robot is in motion. The collected data includes the
point clouds and the robot's locations is determined based on
the locations of the landmarks in the environment. In the
second step, the data is processed to reconstruct the 3D
environment map.

Landmark Robot’s
Recognition Pose (x,y.0) v
Kinect 4 3D Map
] Reconstruction
3D Point
information Clouds

Fig. 1. Overview of the proposed 3D map reconstruction algorithm.

In order to reconstruct the 3D map, it is necessary to
capture in depth images of an indoor environment and the
locations where they were collected. Before starting to collect
any data, the robot must be localized in the 2D map obtained
earlier. This means that an initial exploration must be
performed, including the identification of landmarks in a
natural environment [30] and the positioning of these
landmarks in a 2D environment. Once data collection has
started, two different processes run in parallel. Figure 1 shows
how the Kinect camera collects data and manages the robot's
localization for providing the robot's location for each point
cloud.

B. Cloud’s Filtering

Once all data is saved, reconstructing 3D map is begun by
processing these data to produce the final 3D map. This is
done in two main processes: Firstly, every cloud is processed
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to reduce its size; Secondly, clouds are added to the final map
by registering them. In practice, each cloud image is obtained
with the Kinect has about 300000 points. The cloud with the
large will take more time for calculation and a lot of memory
for saving. For this reason, filtering the cloud image will
reduce resource usage and computation time during
processing 3D cloud images. The process of filtering consists
of four steps: Filtering; Reducing pattern; Removing
unnecessary points; and Reconstructing [26].

Pass Through filter: This filter is used to set a depth limit
in the cloud. The Kinect has a working range of 3.5 meters.
However, it is actually obtained points further than this
distance threshold. We have found that in order to perform
accurate reconstruction, it is necessary to use points farther
than 3.5 meters, although the accuracy of the depth will be
decreased as the distance between the points and the Kinect
will be increased. For this reason, a Pass Through filter
should be applied for removing any point that is more than 6
meters deep from the Kinect.

Down Sampling: Two points in a point cloud captured
from the Kinect can have a minimum distance of a few
millimeters. In the case of mapping environments, its area is
about some square meters, it is unnecessary to obtain the
minimum distance with such accuracy. It is acceptable to
reduce the accuracy of the reconstructed 3D image by
reducing the size of all point clouds and significantly both
computation time and memory usage. In particular, the VVoxel
Grid [27] represented how to reduce the number of points by
dividing a point cloud in the "voxels™ boxes of 5 cm-sided
cubes by the desired width. Then all points in a box are
reduced into a single point corresponding to their centers. In
this way, it is possible to set the minimum distance between
points with the desired accuracy for reducing the number of
points of a point cloud.

Remove Outliers: Point clouds from the Kinect can have
measurement errors that can produce sparse outliers. Such
points can lead to errors in the surface normalization of the
local point cloud. Calculations of this type often require
investigating a certain number of neighborhood points in an
adjacent area of one point, so it is important to ensure that the
neighborhood points are correct. Furthermore, removing
some unnecessary points contributes to a reduction in
processing time, although its effect in this algorithm is less
important compared to the two processes as shown above.
The method based on statistical analysis on the
neighborhoods of each point was applied to eliminate outliers
[28]. The average distance from each point to all of its
neighborhoods is calculated. With the Gaussian distribution,
mean and standard deviation, all points have the average
distance outside a certain range are called outliers and they
will be removed from the data set. In this study, 50
neighborhood points were used for each point to analyze its
state and it will remove all points with distances greater than
the standard deviation of the average distance to the analyzed
point.

Surface Reconstruction: Surface reconstructing is used to
improve the elimination of data anomalies. It is based on the
Moving Least Squares (MLS) algorithm [28]. In particular,
the MLS provides a reconstructed surface for a given set of
points by interpolating higher-order polynomials among
rounded local neighborhoods. Smoothing and resampling a
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noisy cloud allows to more accurately estimate of surfaces
and curvature. Such estimates are further used to merge point
clouds together.

C. Modified
Reconstruction

In theory, positioning the robot would allow to reconstruct
the entire map by applying translations and rotations to all
point clouds. After the map initialization for each new cloud,
we merge it with the previous map and decide if such merging
is good enough to insert it into the map. This process will
allow to consider the quality of the newly merged cloud based
on the Fitness Score (FC) value.

The MICP algorithm is a well-known process that aligns
two sets of point clouds by minimizing the Euclidean distance
between their corresponding points [9]. It finds the closest
pairs of 3D points in the source and target which are identifies
as objects if their distance is less than a specified distance.
Therefore, it estimates a transformation that minimizes the
distance between them and the iterations until the difference
between consecutive transformations is less than the defined
limit or the maximum iterations is reached. However, the
MICP can have some problems due to its convergence is at
the local minimum. Therefore, it can produce poor merging
results and in order to improve this one, it may need large
iterations. The MICP also returns a parameter, called the
fitness score, that provides information about the quality of
adjusting. The fitness score corresponds to the error of
distance between clouds adjusted after the merging process.
This parameter will be useful to decide under which cases of
adjustment is good enough for inserting it into the map.

After adjusting the new cloud using the MICP as shown in
Fig. 2, this ¢ merged loud will be performed the second
adjustment, if the result is not accepted. In this case, an MICP
is applied to get better first prediction than that of the ICP.
After applying the second MICP, the result will be used to
decide whether or not to use the new cloud on the map. Fig.
2 shows the structure of cloud merging process using the
MICP method.

ICP Algorithm for 3D Point Cloud

Initialize Map

Get Cloud

Filter Cloud
ICP Alignment

Calculate Robot’s Pose
|
A 4

MICP Alignment ‘

Decide include Cloud
to Map

Fig. 2. The process of the 3D map rescontruction based on merging point
clouds.
1) Map Initialization
The first point cloud and its location are used to initialize
the first map. This process applies a transformation matrix to
shift the cloud from its local reference position to its global
reference position. P%; is the i™ point cloud in its local
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reference space and PS is the corresponding point cloud in
the global reference space. At this time, the cloud is ready to
be set as the first map so that any accepted new cloud will be
inserted into. Fig. 3 shows steps for performing according to
this method.

Local Reference Robot’s Pose
(PXi) (xi, vi, 0i)
\ |
v v

Global Reference
(P%)

v

ICP Registration
Process

v

First Cloud in Map

Fig. 3. Representation of the block diagram for the initial process of the
first map.

2) Building a new cloud

For a new cloud merging process, a new cloud is obtained
after filtering and the corresponding global position of the
camera system is collected. With using this information, this
cloud can be transformed into a global reference. In order to
combine different clouds and create a common map, all of
them must be in the same reference.

Zy

Or

Fig. 4. The coordinates of the Kinect and Robot.

The obtained point clouds are referenced to the Kinect
camera's coordinate Rk. Its original point Ok is at the camera
location and its Xk, Yk and Zk axes are determined as shown
in Fig. 4. In particular, it corresponds to a moving coordinate
system during the robot movement for acquisition of different
clouds. In addition, the robot's reference system Rg, as shown
in Fig. 4, is a mobile system. Therefore, to adjust the cloud
with the robot's reference system, the transformation TRk is
applied to transform the cloud with the Kinect coordinate
system into the Robot coordinate system using the following
formula:

0 0 10
1 0 00

TR = 1

K70 -1 00 @)
0 0 0 1
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When the cloud is in the appropriate local reference
system, it is necessary to transform the cloud into the global
reference system similar to other clouds. Rg is the fixed
coordinate system and has the origin and direction as Rg when
the position of the robot is (Xo, Yo, 60) = (0,0,0). In practice,
the robot moves around the floor, so the robot has the
unchanged coordinate Zg and the plane (X¢ - Yg) with the
camera system is considered as not to move to the Rg. Fig. 5
shows the relationship between the coordinates of Rg and Rg.

Fig. 5. Representation of the coordinates of Rg and Rg.

To transform the reference cloud from the coordinate
system Rgr to the global coordinate system Rg, the TCr
transformation is described as follows:

cos(ée) —sin(d) 0 Xg
7o _|sine)  cos(B) 0 Yo @
0 0 1 0
0 o 01
Yca A~
< dC
o C (Xc, Yo)
Robot (Xc, Ya)
Oc >

Xc

Fig. 6. The coordinates of the robot and surface landmarks.

The coordinates (Xg, Yg) of the robot in the plane are
determined by the position of 3 landmarks in that plane [29].
In Fig. 6, assuming that the robot moves in the flat space
0XgYe with the undefined coordinate (Xg, Yg). Moving
space is assumed to be an absolute plane for obstacles chosen
to be landmarks. These obstacles have distinctive features
from other landmarks [30] and their positions are determined
in space A(Xa, Ya), B(Xg, Yg), and C(Xc, Yc¢), in which the
distances from the robot to the landmarks are da, dg, dc,
respectively.

To find two coordinate components Xg and Yg, it is
necessary to find the solution of the system, including 3
equations (3), (4), (5). To solve this system of the equations,
it is necessary to determine two important parameters, the
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coordinates of the landmarks and the distance from the robot
to these landmarks. In addition, the SURF landmark
recognition algorithm is employed [31] to identify landmarks
on the way of the robot’s movement. This algorithm allows
to find feature points on the landmark appearing on the image
frame collected from the camera installed with the robot and
matches the feature points of the landmarks stored in the
library. When the robot wants to locate its position through
landmarks, the closest landmarks will be detected and then
they are used as the positioning reference. After finding the
landmarks in the image frame, the distances from the robot to
the corresponding landmarks da, ds, dc are determined based
on the depth image obtained from the Kinect camera. The
coordinates of the landmarks and the distance from the robot
to the corresponding landmark will be used to determine the
current coordinates of the robot using the following
equations:

(xa=xf +(ya—yf =di @3)
(xg=x)* +(yg —y)* =d2 ()
(xc—xf +(yc —y)’ =d& ®)

In addition, the rotation angle 0¢ of the robot around the
OcY¢ axis is determined based on the calculation of the
rotation angle 6 between the point clouds. Assume that there
are 2 point clouds A and B, the covariance matrix, H is
calculated using the following equation:

H:(A—%ZLAiJ(B—%ZLBiJT (6)

There are some ways to find the optimal rotation between
point clouds. The Singular Value Decomposition (SVD) [32]
method is considered as “a powerful magic wand” in linear
algebra to determine the rotation matrix R as follows:

[U,S,V]=SVD(H) )

R=VU' (8)

Therefore, the rotation angle can be extracted from the
matrix R as follows:

The rotation angle of the robot in the global space at the it"
is calculated as follows:
O (1) =65 (i-1)+6(i) (10)
Finally, the cloud transformation matrix obtained from the
Kinect in the global reference space will be calculated using
the following equation:

TS =TS. TR (11)
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3) Decision of the inclusion

In this final step, the cloud merging process will decide
whether or not to insert the converted cloud into the 3D map.
To perform this one, the fitness score parameter given by the
MICP is used. From experience, we recognize that clouds
with the fitness score less than 0.01 are adequate for the map
to be merged.

During a cloud merging process, overlapping areas
between point clouds for adjusting are used and such overlap
areas need to appear at all times. However, this is impossible
to perform any time due to appearing accepted clouds and the
common area of the previous clouds for reconstruction of 3D
cloud map. Therefore, for improving this one, we decided to
add to the 3D cloud map a cloud with an unsatisfactory fitness
score if the last 3 clouds fail instead of using the cloud
transformed by using the MICP. In particular, this cloud is
inserted into the map by adding its points to the 3D map.

If a new cloud is added, all of its points will be added to
the previous map. In this case, the overlapping areas will be
denser due to containing two points at the estimated same
location. In practice, it is unnecessary to have such density in
the 3D cloud map and it can also decrease the accuracy of the
map. Hence, a filtering process is necessary to be able to
maintain the appropriate density in the map. The map was re-
sampled using the Voxel grid, in which setting its size to 2
cm. Therefore, the map is filtered with the parameters similar
to filtering the new cloud before added.

1. RESULTS AND DISCUSSION

A. Description of Mobile Platform

In this study, the hardware system architecture of the
mobile robot platform consists of the Kinect RGB-D
connected to a PC and other processing equipment for data
processing and control of the robot. After navigating to
control the differential robot, velocity signals from the PC
through the Driver controller are sent to the left and right
wheels as shown in Fig. 7. Finally, all the mappings and the
localization process are displayed on the PC screen during the
robot's movement.

+ |moTOR1T ™
i 20v F "

Fig. 7. Block diagram of the hardware system of the mobile platform.

DOI: http://dx.doi.org/10.24018/ejers.2021.6.3.2421

European Journal of Engineering and Technology Research
ISSN: 2736-576X

Fig. 8. Robot model with the Kinect RGB-D and PC.

The robot with collecting environmental images is
controlled via Bluetooth connection. The robot will move
around a room to collect images for recognizing obstacles in
the surrounding environment. The Kinect camera is installed
with the front of the robot and it is setup a distance of 50 cm
from the floor for collect almost obstacle images during the
robot movement as shown in Fig. 8. In the hardware system,
the rotor is installed with a laptop configured to a Core i3
processor, the CPU speed is 2.0GHz, the capacity of the
integrated RAM in the laptop is 4 Gbyte. The Kinect camera
and Arduino Nano are connected to the laptop by using a USB
port for collect RGB images and corresponding depth images.

B. Results of Pre-processing Cloud Images

By preforming these steps, the number of points in the
point cloud is significantly reduced. In this research, we
propose the use of point clouds with less than 50000 points.
This is usually obtained after filtering. However, in some
cases, the point clouds still have a larger size compared to the
setup size. In this case, the second filtering will be performed
for reducing suitable points. This reduction will speed up the
time of adjusting and this can avoid errors and obtain the
adequate accuracy.

(b)
Fig. 9. Representation of processing clouds:
(a) Cloud image before filtering; (b) Cloud image after filtering.
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C. Results of Determining the Robot Coordinate based on
Landmarks

In order to determine the position of the robot, the most
important step is to identify landmarks during movement. In
particular, the landmarks are selected to calculate the robot
position as shown in Fig. 10. In practice, the sample images
may have different dimensions as well as details. In addition,
each landmark with the coordinate is placed in a fixed
position in the robot's movement space.

(a) Landmark image with two red

fire extinguishers box

(d) Landmark image with natural
obstacles

Fig. 10. Landmark image chosen for identification.

(c) Landmark image with blue box

In the robot position search algorithm, it is necessary to
detect at least three landmarks. This means that when the
three landmarks are identified, the center position of the
landmark in the image frame captured from the camera
system is determined. Therefore, this landmark information
is used to determine the distance from the robot to the
corresponding markers and the calculated results are
compared with the actual measurement results. In particular,
Fig. 11 depicts the landmarks obtained from the camera at
different locations and the landmarks highlighted in blue
using the SURF method. Therefore, according to the accurate
calculation, the corresponding robot position will be returned
close to the predicted result.

European Journal of Engineering and Technology Research
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(b)

(©
Fig. 11. Three landmarks captured from the camera system equipped
with the robot at three different places:
(@) Three landmark positions at 1% place (Case-1);
(b) Three landmark positions determined at 2" place (Case-2);
(c) Three landmark positions determined at 3" place (Case-3).

Table I shows the different positions of the robot during its
movement in 2D space and each position determined includes
a standard value and another value is calculated using (3), (4),
(5) for evaluating calculation errors under standard lighting
conditions. While Table Il shows the results of positioning
the robot under low light conditions. Therefore, the SURF
algorithm for landmark recognition is less dependent on the
luminance change on the landmark image. With this main
factor, when the landmarks are within the camera's visible
area, the light intensity of the landmark images does not really
affect the robot's positioning.

TABLE |: POSITIONS OF THE ROBOT DETERMINED USING THE LOCALIZATION ALGORITHM IN THE STANDARD LIGHT CONDITION

[Calculation position,

No. (Xa,Ya) da (Xe,Ye) ds (Xe,Ye) de standard position]
1 (450,1205) 2700  (150,1065) 4050 (300,903) 4400 [294.781, 356.166]
2030 4045 4450 [297.513, 337.561]

2 (450,1205) 3900  (150,1065) 4400 (300,903) 4400 [246.527, 504.365]
3890 4420 4442 [292.938, 506.473]

3 (600,1050) 3050 (300, 900) 3000 (450,1200) 3000 [473.689, 244.784]
2920 2980 2985 [438.389, 298.139]
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TABLE Il: POSITIONS OF THE ROBOT DETERMINED USING THE LOCALIZATION ALGORITHM IN THE LOW LIGHT CONDITION

[Calculation position,

No. (Xa,Ya) da (Xs,Ys) ds (Xe,Ye) de standard position]
1 (450,1205) 2700 (150,1065) 4050 (300,903) 4400 [294.781, 356.166]
2030 4045 4450 [297.513, 337.561]

2 (450,1205) 3900 (150,1065) 4400 (300,903) 4400 [246.527, 504.365]
3890 4420 4442 [292.938, 506.473]

3 (600,1050) 3050 (300, 900) 3000 (450,1200) 3000 [473.689, 244.784]
2920 2980 2985 [438.389, 298.139]

D. Experimental results of 3D mapping

These Practical experiments we show how Kinect sensor
can build 3D maps for made-up environment with dimensions
4800 mm x 4800 mm shown in Fig. 12. In this project Mobile
robot is navigated manually by using Smartphone. This
project is used Kinect with mobile robot for mapping by
connecting Kinect to laptop. We control the mobile robot
slowly on itself inside environment to start mapping.

Fig. 12. The environment for building maps.

During mapping, if an error occurs, the map reconstruction
system of the robot displays a warning and immediately stops
the mapping. Therefore, the user should control the robot so
that it can return back its correct original position. We have
found that the error usually occurs when there are many areas
without texture or blur motion as shown in Fig. 13. In
particular, the blue line in the reconstructed map image shows
the robot's path during data collection. The image of the
experimental environment map from different angles shows
that the 3D model of the indoor environment with good
quality is successfully reconstructed.
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(d)

Fig. 13. 3D map of the indoor environment:
(a) Result of the 3D mapping of room at view 1;
(b) Result of the 3D mapping of room at view 2;
(c) Result of the 3D mapping of room at view 3;
(d) Result of the 3D mapping of room at view 4.

IV. CONCLUSION

In this paper, we have presented a MICP algorithm that
improved the quality of reconstructing 3D maps using the
Kinect cameras. Our approach used information from the 3D
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point clouds and the position of the robot in its moving
environment to compute the transformation matrix for the
merging process of clouds. By evaluating the error of
merging the point clouds during the 3D map reconstruction,
we could eliminate point clouds which are not suitable for
inserting into the 3D map. Finally, we reconstructed the 3D
map with the high reliability of the indoor environment, and
it can be used for robot localization, navigation and route
planning.
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