
 European Journal of Engineering and Technology Research

ISSN: 2736-576X

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2740 Vol 7 | Issue 2 | March 2022 18

Abstract — Third-party libraries are frequently utilized to

save implementation time when developing new software. The

significance of libraries in the creation of mobile applications

cannot be overstated. Others can use the programmer's library

created and shared with the rest of the world in their own

projects as a result of your efforts. The purpose of this work is

to create a taxi service library for developers using both Android

and iOS, using Dart Object-Oriented Programming, Dio, and

Retrofit. The programmer's creation of an interface for

accessing platform-specific functionality from the library and

creating Android and iOS apps from its projects needs to speed

up software development. Therefore, the best solution is for the

programmer to use it. Flutter is an open-source SDK for

developing high-performance and more reliable mobile

applications for operating systems like iOS and Android, from a

single code base. Moreover, Flutter targets the top mobile

operating systems like Android and iOS. When developing a

Dart open source project, the common conclusion the

programmer always ends up with is to share the produced

outcomes with the developer community. In the dart world, the

latter should be the least objective. This will quickly enable

building an app without having to develop everything from

scratch. It provides a solution for GPU rendering and UI,

powered by native ARM code.

Key words — Cross-platform Library, Dart, Flutter, Dio, and

Retrofit.

I. INTRODUCTION

Libraries are well-defined and are designed for reuse

throughout implementation. For example, a website may have

multiple web pages that implement the same navigation bar

or text-field, but none of these objects have a relation to one

another. And the mobile application development services

have evolved into a higher level with APIs and when

developers develop apps for the mobile, they rely heavily on

APIs for connectivity. Which allows them to communicate

seamlessly with the enterprise. In facts, APIs accelerate

mobile development and enable tremendous agility for

organizations that are going through their own digital

transformation [8].

Developing a library and then sharing it with the rest of the

world so that others can utilize it in their projects is not

allowing application code to interface directly with native

APIs is one of the major issues faced by cross-platform

solutions. A naive option would be to use a cross-platform

development framework to cover all expected interactions

with native APIs. Due to the rapid growth of native APIs, this

would necessitate ongoing maintenance. Furthermore,

applications would be obliged to include unused wrappers,

Submitted on February 08, 2022.

Published on March 04, 2022.

Dilkhaz Y. Mohammed, Scientific Research Center, Duhok Polytechnic
University, Iraq.

(e-mail: Dilkhaz.mohammed dpu.edu.krd)

which would increase the size of the program. Flutter solves

the issue by providing a set of services [7].

There are a lot of design patterns that programmers use for

Flutter. They are all different ways of managing an app's

state. The goal of a design pattern is to provide a clean

standard for how our work will be organized, how the

components will interact with each other, separate layers so

that a change in one is transparent to the others, and most

importantly, promote the reuse of blocks of code. Bloc is one

of flutter recommendations state management and the core

concepts of Bloc are Events and States [3].

This study is mainly aimed at building a taxi service library

that other developers might use in their Android and iOS

apps. The Retrofit library is a Dio client that makes

consuming Rest APIs easier by sending dynamic headers,

parameters, requests, and responses in a custom and secured

way, as Dio is our HTTP client and handles the connection.

II. RELATED WORK

In general, cross-platform development uses a single code

base that can be executed on multiple platforms. Platforms in

this sense typically refer to different operating systems

provided by software or hardware vendors, such as Android

and iOS. The traditional native approach uses native tools; the

application communicates with the platform to create widgets

or access services as shown in Fig. 1. The widgets are

rendered on a screen canvas, and events are passed back to

the widgets. However, the problem with this approach is that

the programmer has to create separate apps for each platform

because the widgets are different [2].

Fig. 1. Native Android/iOS code interacts with the platform.

The React Native approach is a well-known and popular

JavaScript framework for cross-platform development. The

programmer needs some native code for each platform they

support, and then some JavaScript code to bind it all together.

React Native, as shown in Fig. 2, uses a so-called bridge to

Siddeeq Y. Ameen, Scientific Research Center, Duhok Polytechnic

University, Iraq.

(e-mail: Siddeeq.ameen dpu.edu.krd)

@

@

Developing Cross-Platform Library Using Flutter

Dilkhaz Y. Mohammed and Siddeeq Y. Ameen

 European Journal of Engineering and Technology Research

ISSN: 2736-576X

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2740 Vol 7 | Issue 2 | March 2022 19

access the native platform widgets. This is the main reason

why React Native can’t beat a native app’s performance:

communication with native components occurs with the help

of a JavaScript bridge. An additional layer causes slight

delays in app loading. In most cases, this delay is too

insignificant to notice, but some performance-critical

functionality will make the difference crucial [2].

Fig. 2. React Native interacts with the platform.

Another approach across platform development uses the

Multi-OS Engine and Java/Kotlin is shown in Figure 3 have

only one codebase. Furthermore, the approach is useful due

to the fact that, once compiled, such JAR files can be used in

different projects on different platforms. Android Studio

allows you to easily link frameworks and libraries contained

in JAR to XCode projects and also specify all the specified

resources necessary for the framework. Libraries will be

copied to the final app file. However, the framework lies in

the binding generator [4].

However, with the last two approaches, the app code

communicates through a bridge, which may have

performance implications. On the other hand, Flutter

eliminates the bridge and moves the programmer's rendering

into his app. Internally, Flutter consists of a framework built

with Dart and a rendering engine built mostly in C++.

Fig. 3. Multi-OS Engine and Java/ Kotlin Native interacts with the

platform.

III. PROPOSED SYSTEM DEVELOPMENT

These days, almost every mobile app connects to the

internet to get and send data. The programmer should

definitely learn how to work with responsive web services, as

their proper implementation is essential when developing

modern apps. Flutter's Retrofit is the easiest way to call rest

APIs. In Dart applications, once such a library has been

created, managing and deploying it is very convenient.

However, to share code across platforms using Dart, to write

platform-independent code and share it between Android and

iOS with Flutter.

Flutter is an open-source SDK for developing high-

performance, high-fidelity mobile apps for iOS and Android

devices with the same codebase. Flutter uses the Dart

programming language to create components and the Skia 2D

graphics engine to bring code to life. A modern, react-style

framework is also included in Flutter. The framework's

content is depicted in Fig. 4. Skia is used to render the

application's UI at the lowest level. Flutter uses a lightweight

Dart virtual machine to run the majority of its framework and

application code. The rendering engine is written in C++,

whereas the framework code is written in Dart. Flutter,

creates its own user interface on its own canvas and feeds it

to a platform-specific engine.

Fig. 4. Flutter framework and engine contents.

It's always been difficult to distribute software on many

platforms, such as Android and iOS Mobile, due to the fact

that the programmer must maintain a separate codebase for

each platform. Flutter addresses this issue by allowing

programmers to create mobile apps for both iOS and Android

devices. Flutter uses a high-performance rendering engine to

render each view component on its own. In terms of

architecture, the engine’s C or C++ code involves

compilation with Android’s NDK and LLVM for iOS,

respectively, and during the compilation process, the Dart

code is compiled into native code. Tim Sneath, group product

manager at Google, similarly defines it as "a powerful

general-purpose open UI toolkit." The built-in support

currently is for the iOS and Android mobile platforms as

shown in Fig. 5.

Fig. 5. Flutter application structure.

Now that the programmer is familiar with all of the basic

structures, he or she should be able to grasp how these layers

communicate with one another. A new architecture has

appeared in the Flutter community. The Bloc pattern is really

useful when it comes to separating code into layers. Each

layer, or set of classes, is in charge of a particular task. In this

project, Data Layer, there is a directory. This data layer is

 European Journal of Engineering and Technology Research

ISSN: 2736-576X

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2740 Vol 7 | Issue 2 | March 2022 20

used for the app's model and background communication.

The three main parts of this work are to begin with building

a cross-platform library, followed by publishing the library

onto the internet using a specific tool that the other developers

might use in their Android and iOS apps, and lastly,

developing Android and iOS apps using the library. The work

organizational chart is shown in Fig. 6.

Fig. 6. Work Organizational Chart.

To begin with, creating a library to fetch data from the

internet is necessary for most apps. Flutter provides tools,

such as the http package, by sending dynamic headers,

parameters, requests and responses in a custom and secured

way, Retrofit is the best way. Creating a library and sharing

it with other developers is the main idea of this work. As soon

as the programmer publishes the package, users can depend

on it.

Additionally, in flutter, widgets have a different lifespan;

they are immutable and exist only until they need to be

changed. Whenever widgets or their states change, Flutter’s

framework creates a new tree of widget instances. In

comparison, an Android view is drawn once and does not

redraw until invalidate is called. On iOS, most of what

programmers create in the UI is done using view objects. In

comparison, an iOS view is not recreated when it changes,

but rather it’s a mutable entity that is drawn once and doesn’t

redraw until it is invalidated.

Furthermore, Flutter takes a different approach to avoiding

performance problems caused by the need for a bridge by

using a compiled programming language, namely Dart, Dart

is compiled into native code for multiple platforms. In Flutter,

almost everything is a widget. A widget is a way to declare

and build the user interface to help build that look-alike native

platform for Android and iOS, and all that Flutter requires of

the platform is a canvas on which to render the widgets so

they can appear on the device screen, and access to events and

services. As can be seen in Fig. 7, moving the widgets and the

renderer into the app does not affect the size of the app, which

is similar to minimal apps built with comparable tools.

Fig. 7. Flutter interacts with the platform.

IV. DEVELOPED SYSTEM ASSESSMENTS

Flutter contains networking and JSON serialization for

performing basic network tasks, but is pretty daunting to use

when handling some advanced features. By comparison, Dio

provides an intuitive API for performing advanced network

tasks with ease. It implements features like interceptors and

default options and is readable. Dio gives simplicity. It has a

very intuitive programming API. However, making large

Flutter applications can be a pain if the programmer does not

implement good design patterns. One of these patterns is the

Business Logic Component pattern to solve this problem. In

simple terms, Bloc does two things: Connect the source of

data to the UI. Update the UI when the state changes. To call

Rest API’s by sending dynamic headers, parameters, request

and response in a custom and secured way, "Retrofit" is the

best way. Due to this serialization approach, Retrofit

automatically converts the JSON response into a Dart object.

It is better for large projects as the programmer does not need

to hand write boilerplate code. Keep in mind that publishing

is forever. Once the package is published, users can depend

on it. Removing the package would break their dependencies.

The programmer can always upload new versions of his

package, but the old ones will continue to be available for

users that aren’t ready to upgrade yet. As a result, the benefits

of these tools are significantly reduced development time,

have a simpler codebase, and increase the productivity and

efficiency of the app.

V. CONCLUSION

Flutter networking using these tools feels like a breeze, and

it gracefully handles many edge cases. Dio makes it easier to

handle multiple simultaneous network requests, all with the

safety of an advanced error handling technique. It also allows

programmers to avoid boilerplate code. Flutter's retrofit API

call allows programmers to call APIs while writing very few

lines of code. Once a programmer has implemented a

package, he can publish it on the official package repository

so that other developers can easily use it. The programmer

can always upload new versions of his package, but the old

ones will continue to be available for users that are not ready

to upgrade yet.

CONFLICT OF INTEREST

Authors declare that they do not have any conflict of

interest.

 European Journal of Engineering and Technology Research

ISSN: 2736-576X

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2740 Vol 7 | Issue 2 | March 2022 21

REFERENCES

[1] Tyagi P. Pragmatic Flutter: Building Cross-Platform Mobile Apps for

Android, iOS, Web, & Desktop. 1st ed. Boca Raton: CRC Press; 13

August 2021.
[2] Hacernoon.com. what’s Revolutionary about Flutter [Internet]. 2017.

Available https://hackernoon.com/whats-revolutionary-about-flutter-
946915b09514.

[3] Hoang Ly. State Management Analyses of the Flutter Application.

BSc. Thesis. Metropolia University of Applied Sciences; 2019.

[4] Fayzullaev J. Native-like Cross-Platform Mobile Development Multi-

OS Engine & Kotlin Native vs Flutter. BSc. Thesis. South Eastern

Finland University of Applied Sciences; 2018.

[5] Fentaw AE. Cross platform mobile application development: a

comparison study of React Native Vs Flutter. MSc. Thesis. University

of Jyvaskyla; 2020.

[6] Kuitunen M. CROSS-PLATFORM MOBILE APPLICATION

DEVELOPMENT WITH REACT NATIVE. BSc. Thesis. Tampere

University of Technology; 2018.

[7] Docs.flutter.dev. Developing packages & plugins. [Internet]. Available
https://docs.flutter.dev/development/packages-and-

plugins/developing-packages.

[8] CompanionLink Blog. The Benefits of Using APIs in Mobile App
Development [Internet]. 2021. Available from:

https://www.companionlink.com/blog/2021/02/the-benefits-of-using-

apis-in-mobile-app-development/.
[9] Mamoun R, Nasor M, Abulikailik SH. Design and Development of

Mobile Healthcare Application Prototype Using Flutter. In2020

International Conference on Computer, Control, Electrical, and
Electronics Engineering (ICCCEEE) 2021 Feb (pp. 1-6). IEEE.

Doi:10.1109/ICCCEEE49695.2021.9429595.
[10] Shah K, Sinha H, Mishra P. Analysis of cross-platform mobile app

development tools. In2019 IEEE 5th International Conference for

Convergence in Technology (I2CT) 2019 Mar 29 (pp. 1-7). IEEE.
Doi:10.1109/I2CT45611.2019.9033872.

[11] Flutter’s channels - dev. (2020, 12 08). Retrieved from Flutter build

release channels: https://github.com/flutter/flutter/wiki/Flutter-build-
release-channels#dev.

[12] Flutter Dev. (2020, 12 09). Review Xcode project settings. Retrieved

from flutter.dev: https://flutter.dev/docs/deployment/ios#review-
xcode-project-settings.

[13] Flutter Dev. (2020, 12 09). Create a keystore. Retrieved from

flutter.dev:https://flutter.dev/docs/deployment/android#create-a-
keystore.

[14] Flutter Dev. (2020, 12 09). Build and release an iOS app. Retrieved

from flutter.dev: https://flutter.dev/docs/deployment/ios.
[15] Flutter Community. (2020, 12 07). flutter_launcher_icons. Retrieved

from pub.dev: https://pub.dev/packages/flutter_launcher_icons.

Dilkhaz Y. Mohammed was born in Iraq and

educated in both Iraq and Turkey. He has a BSc from

the University of Duhok (2004). In 2019, he achieved
a Master's Degree in Software Engineering at FIRAT

University, Turkey. He is working as an official at the

Duhok Polytechnic University scientific research
center.

Siddeeq Y. Ameen received BSc in Electrical and

Electronics Engineering in 1983 from University of

Technology, Baghdad. Next, he was awarded the

MSc and Ph.D. degree from Loughborough

University, UK, respectively in 1986 and 1990 in the

field of Digital Communication Systems and Data

Communication. From 1990-2006, Professor

Siddeeq worked with the University of Technology

in Baghdad with participation in most of Baghdad’s

universities. From Feb. 2006 to July 2011, he was a Dean of Engineering

College at the Gulf University in Bahrain. From Oct. 2011-Sep. 2015 he

joined the University of Mosul, College of Electronic Engineering as a

Professor of Data Communication and next Dean of Research and

Graduate Studies at Applied Science University, Bahrain till Sep. 2017.

Presently, he is a quality assurance advisor at Duhok Polytechnic

University, Duhok, Iraq. Through his academic life, he published over

100 papers and a patent in the field of data communication, computer.

Networking and information security and supervised over 100 Ph.D. and

MSc research students. He won the first- and second-best research in

Information Security by the Arab Universities Association in 2003.

