European Journal of Engineering and Technology Research
ISSN: 2736-576X

Developing Cross-Platform Library Using Flutter

Dilkhaz Y. Mohammed and Siddeeq Y. Ameen

Abstract — Third-party libraries are frequently utilized to
save implementation time when developing new software. The
significance of libraries in the creation of mobile applications
cannot be overstated. Others can use the programmer’s library
created and shared with the rest of the world in their own
projects as a result of your efforts. The purpose of this work is
to create a taxi service library for developers using both Android
and iOS, using Dart Object-Oriented Programming, Dio, and
Retrofit. The programmer's creation of an interface for
accessing platform-specific functionality from the library and
creating Android and iOS apps from its projects needs to speed
up software development. Therefore, the best solution is for the
programmer to use it. Flutter is an open-source SDK for
developing high-performance and more reliable mobile
applications for operating systems like iOS and Android, from a
single code base. Moreover, Flutter targets the top mobile
operating systems like Android and iOS. When developing a
Dart open source project, the common conclusion the
programmer always ends up with is to share the produced
outcomes with the developer community. In the dart world, the
latter should be the least objective. This will quickly enable
building an app without having to develop everything from
scratch. It provides a solution for GPU rendering and Ul,
powered by native ARM code.

Key words — Cross-platform Library, Dart, Flutter, Dio, and
Retrofit.

I. INTRODUCTION

Libraries are well-defined and are designed for reuse
throughout implementation. For example, a website may have
multiple web pages that implement the same navigation bar
or text-field, but none of these objects have a relation to one
another. And the mobile application development services
have evolved into a higher level with APIs and when
developers develop apps for the mobile, they rely heavily on
APIs for connectivity. Which allows them to communicate
seamlessly with the enterprise. In facts, APIs accelerate
mobile development and enable tremendous agility for
organizations that are going through their own digital
transformation [8].

Developing a library and then sharing it with the rest of the
world so that others can utilize it in their projects is not
allowing application code to interface directly with native
APIs is one of the major issues faced by cross-platform
solutions. A naive option would be to use a cross-platform
development framework to cover all expected interactions
with native APIs. Due to the rapid growth of native APIs, this
would necessitate ongoing maintenance. Furthermore,
applications would be obliged to include unused wrappers,

Submitted on February 08, 2022.

Published on March 04, 2022.

Dilkhaz Y. Mohammed, Scientific Research Center, Duhok Polytechnic
University, Irag.

(e-mail: Dilkhaz.mohammed@dpu.edu.krd)

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2740

which would increase the size of the program. Flutter solves
the issue by providing a set of services [7].

There are a lot of design patterns that programmers use for
Flutter. They are all different ways of managing an app's
state. The goal of a design pattern is to provide a clean
standard for how our work will be organized, how the
components will interact with each other, separate layers so
that a change in one is transparent to the others, and most
importantly, promote the reuse of blocks of code. Bloc is one
of flutter recommendations state management and the core
concepts of Bloc are Events and States [3].

This study is mainly aimed at building a taxi service library
that other developers might use in their Android and iOS
apps. The Retrofit library is a Dio client that makes
consuming Rest APIs easier by sending dynamic headers,
parameters, requests, and responses in a custom and secured
way, as Dio is our HTTP client and handles the connection.

Il. RELATED WORK

In general, cross-platform development uses a single code
base that can be executed on multiple platforms. Platforms in
this sense typically refer to different operating systems
provided by software or hardware vendors, such as Android
and i0S. The traditional native approach uses native tools; the
application communicates with the platform to create widgets
or access services as shown in Fig. 1. The widgets are
rendered on a screen canvas, and events are passed back to
the widgets. However, the problem with this approach is that
the programmer has to create separate apps for each platform
because the widgets are different [2].

Platform

f OEM Widgets

Your App

Canvas

Events

MNative Code

Fig. 1. Native Android/iOS code interacts with the platform.

Bluetooth

The React Native approach is a well-known and popular
JavaScript framework for cross-platform development. The
programmer needs some native code for each platform they
support, and then some JavaScript code to bind it all together.
React Native, as shown in Fig. 2, uses a so-called bridge to

Siddeeq Y. Ameen, Scientific Research Center, Duhok Polytechnic
University, Iraq.
(e-mail: Siddeeqg.ameen@dpu.edu.krd)

Vol 7 | Issue 2 | March 2022

access the native platform widgets. This is the main reason
why React Native can’t beat a native app’s performance:
communication with native components occurs with the help
of a JavaScript bridge. An additional layer causes slight
delays in app loading. In most cases, this delay is too
insignificant to notice, but some performance-critical
functionality will make the difference crucial [2].

Platform
Your App

OEM Widgets qm
JavaScript B e g Services
Bluetooth
-

Audio Sensors

Ganer

Fig. 2. React Native interacts with the platform.

Another approach across platform development uses the
Multi-OS Engine and Java/Kotlin is shown in Figure 3 have
only one codebase. Furthermore, the approach is useful due
to the fact that, once compiled, such JAR files can be used in
different projects on different platforms. Android Studio
allows you to easily link frameworks and libraries contained
in JAR to XCode projects and also specify all the specified
resources necessary for the framework. Libraries will be
copied to the final app file. However, the framework lies in
the binding generator [4].

However, with the last two approaches, the app code
communicates through a bridge, which may have
performance implications. On the other hand, Flutter
eliminates the bridge and moves the programmer's rendering
into his app. Internally, Flutter consists of a framework built
with Dart and a rendering engine built mostly in C++.

Platform
Source Code Your App
,
OEM Widgets m
Java / Kotlin Native Code
Code
-— Audio Sensors

Camera

Fig. 3. Multi-OS Engine and Java/ Kotlin Native interacts with the
platform.

I1l. PROPOSED SYSTEM DEVELOPMENT

These days, almost every mobile app connects to the
internet to get and send data. The programmer should
definitely learn how to work with responsive web services, as
their proper implementation is essential when developing
modern apps. Flutter's Retrofit is the easiest way to call rest
APIs. In Dart applications, once such a library has been
created, managing and deploying it is very convenient.
However, to share code across platforms using Dart, to write

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2740

European Journal of Engineering and Technology Research
ISSN: 2736-576X

platform-independent code and share it between Android and
iOS with Flutter.

Flutter is an open-source SDK for developing high-
performance, high-fidelity mobile apps for iOS and Android
devices with the same codebase. Flutter uses the Dart
programming language to create components and the Skia 2D
graphics engine to bring code to life. A modern, react-style
framework is also included in Flutter. The framework's
content is depicted in Fig. 4. Skia is used to render the
application’s Ul at the lowest level. Flutter uses a lightweight
Dart virtual machine to run the majority of its framework and
application code. The rendering engine is written in C++,
whereas the framework code is written in Dart. Flutter,
creates its own user interface on its own canvas and feeds it
to a platform-specific engine.

Material Cupertino

Widgets
"oy
(Dart) Rendering
(C++)

Fig. 4. Flutter framework and engine contents.

It's always been difficult to distribute software on many
platforms, such as Android and iOS Mobile, due to the fact
that the programmer must maintain a separate codebase for
each platform. Flutter addresses this issue by allowing
programmers to create mobile apps for both iOS and Android
devices. Flutter uses a high-performance rendering engine to
render each view component on its own. In terms of
architecture, the engine’s C or C++ code involves
compilation with Android’s NDK and LLVM for iOS,
respectively, and during the compilation process, the Dart
code is compiled into native code. Tim Sneath, group product
manager at Google, similarly defines it as "a powerful
general-purpose open Ul toolkit." The built-in support
currently is for the iOS and Android mobile platforms as
shown in Fig. 5.

L~ FlutterApplication
}— android

f— ios

L~ lib

Fig. 5. Flutter application structure.

Now that the programmer is familiar with all of the basic
structures, he or she should be able to grasp how these layers
communicate with one another. A new architecture has
appeared in the Flutter community. The Bloc pattern is really
useful when it comes to separating code into layers. Each
layer, or set of classes, is in charge of a particular task. In this
project, Data Layer, there is a directory. This data layer is

Vol 7 | Issue 2 | March 2022

used for the app's model and background communication.

The three main parts of this work are to begin with building
a cross-platform library, followed by publishing the library
onto the internet using a specific tool that the other developers
might use in their Android and iOS apps, and lastly,
developing Android and iOS apps using the library. The work
organizational chart is shown in Fig. 6.

Fig. 6. Work Organizational Chart.

To begin with, creating a library to fetch data from the
internet is necessary for most apps. Flutter provides tools,
such as the http package, by sending dynamic headers,
parameters, requests and responses in a custom and secured
way, Retrofit is the best way. Creating a library and sharing
it with other developers is the main idea of this work. As soon
as the programmer publishes the package, users can depend
on it.

Additionally, in flutter, widgets have a different lifespan;
they are immutable and exist only until they need to be
changed. Whenever widgets or their states change, Flutter’s
framework creates a new tree of widget instances. In
comparison, an Android view is drawn once and does not
redraw until invalidate is called. On iOS, most of what
programmers create in the Ul is done using view objects. In
comparison, an iOS view is not recreated when it changes,
but rather it’s a mutable entity that is drawn once and doesn’t
redraw until it is invalidated.

Furthermore, Flutter takes a different approach to avoiding
performance problems caused by the need for a bridge by
using a compiled programming language, namely Dart, Dart
is compiled into native code for multiple platforms. In Flutter,
almost everything is a widget. A widget is a way to declare
and build the user interface to help build that look-alike native
platform for Android and iOS, and all that Flutter requires of
the platform is a canvas on which to render the widgets so
they can appear on the device screen, and access to events and
services. As can be seen in Fig. 7, moving the widgets and the
renderer into the app does not affect the size of the app, which
is similar to minimal apps built with comparable tools.

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2740

European Journal of Engineering and Technology Research
ISSN: 2736-576X

Platform
Your App
Widgets, < Canvas |
Rendering Events
Native Code Services

Location|
Audio
Camera etc.

= Blueloolhri

Platiorm Sensors

Channels

Fig. 7. Flutter interacts with the platform.

IV. DEVELOPED SYSTEM ASSESSMENTS

Flutter contains networking and JSON serialization for
performing basic network tasks, but is pretty daunting to use
when handling some advanced features. By comparison, Dio
provides an intuitive API for performing advanced network
tasks with ease. It implements features like interceptors and
default options and is readable. Dio gives simplicity. It has a
very intuitive programming API. However, making large
Flutter applications can be a pain if the programmer does not
implement good design patterns. One of these patterns is the
Business Logic Component pattern to solve this problem. In
simple terms, Bloc does two things: Connect the source of
data to the Ul. Update the Ul when the state changes. To call
Rest API’s by sending dynamic headers, parameters, request
and response in a custom and secured way, "Retrofit" is the
best way. Due to this serialization approach, Retrofit
automatically converts the JSON response into a Dart object.
It is better for large projects as the programmer does not need
to hand write boilerplate code. Keep in mind that publishing
is forever. Once the package is published, users can depend
on it. Removing the package would break their dependencies.
The programmer can always upload new versions of his
package, but the old ones will continue to be available for
users that aren’t ready to upgrade yet. As a result, the benefits
of these tools are significantly reduced development time,
have a simpler codebase, and increase the productivity and
efficiency of the app.

V. CONCLUSION

Flutter networking using these tools feels like a breeze, and
it gracefully handles many edge cases. Dio makes it easier to
handle multiple simultaneous network requests, all with the
safety of an advanced error handling technique. It also allows
programmers to avoid boilerplate code. Flutter's retrofit API
call allows programmers to call APIs while writing very few
lines of code. Once a programmer has implemented a
package, he can publish it on the official package repository
so that other developers can easily use it. The programmer
can always upload new versions of his package, but the old
ones will continue to be available for users that are not ready
to upgrade yet.

CONFLICT OF INTEREST

Authors declare that they do not have any conflict of
interest.

Vol 7 | Issue 2 | March 2022

(1]

[2]

(3]
(4]

(5]

(6]

[7]

8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Tyagi P. Pragmatic Flutter: Building Cross-Platform Mobile Apps for
Android, i0S, Web, & Desktop. 1st ed. Boca Raton: CRC Press; 13
August 2021.

Hacernoon.com. what’s Revolutionary about Flutter [Internet]. 2017.
Available https://hackernoon.com/whats-revolutionary-about-flutter-
946915b09514.

Hoang Ly. State Management Analyses of the Flutter Application.
BSc. Thesis. Metropolia University of Applied Sciences; 2019.
Fayzullaev J. Native-like Cross-Platform Mobile Development Multi-
OS Engine & Kotlin Native vs Flutter. BSc. Thesis. South Eastern
Finland University of Applied Sciences; 2018.

Fentaw AE. Cross platform mobile application development: a
comparison study of React Native Vs Flutter. MSc. Thesis. University
of Jyvaskyla; 2020.

Kuitunen M. CROSS-PLATFORM MOBILE APPLICATION
DEVELOPMENT WITH REACT NATIVE. BSc. Thesis. Tampere
University of Technology; 2018.

Docs. flutter.dev. Developing packages & plugins. [Internet]. Available
https://docs.flutter.dev/development/packages-and-
plugins/developing-packages.

CompanionLink Blog. The Benefits of Using APIs in Mobile App
Development [Internet]. 2021. Auvailable from:
https://www.companionlink.com/blog/2021/02/the-benefits-of-using-
apis-in-mobile-app-development/.

Mamoun R, Nasor M, Abulikailik SH. Design and Development of
Mobile Healthcare Application Prototype Using Flutter. In2020
International Conference on Computer, Control, Electrical, and
Electronics Engineering (ICCCEEE) 2021 Feb (pp. 1-6). IEEE.
Doi:10.1109/ICCCEEE49695.2021.9429595.

Shah K, Sinha H, Mishra P. Analysis of cross-platform mobile app
development tools. In2019 IEEE 5th International Conference for
Convergence in Technology (I12CT) 2019 Mar 29 (pp. 1-7). IEEE.
Do0i:10.1109/12CT45611.2019.9033872.

Flutter’s channels - dev. (2020, 12 08). Retrieved from Flutter build
release channels: https:/github.com/flutter/flutter/wiki/Flutter-build-
release-channels#dev.

Flutter Dev. (2020, 12 09). Review Xcode project settings. Retrieved
from flutter.dev: https://flutter.dev/docs/deployment/ios#review-
xcode-project-settings.

Flutter Dev. (2020, 12 09). Create a keystore. Retrieved from
flutter.dev:https://flutter.dev/docs/deployment/android#create-a-
keystore.

Flutter Dev. (2020, 12 09). Build and release an iOS app. Retrieved
from flutter.dev: https:/flutter.dev/docs/deployment/ios.

Flutter Community. (2020, 12 07). flutter_launcher_icons. Retrieved
from pub.dev: https://pub.dev/packages/flutter_launcher_icons.

Dilkhaz Y. Mohammed was born in Irag and
educated in both Iraq and Turkey. He has a BSc from
the University of Duhok (2004). In 2019, he achieved
a Master's Degree in Software Engineering at FIRAT
University, Turkey. He is working as an official at the
Duhok Polytechnic University scientific research
center.

Siddeeq Y. Ameen received BSc in Electrical and
Electronics Engineering in 1983 from University of
Technology, Baghdad. Next, he was awarded the
MSc and Ph.D. degree from Loughborough
University, UK, respectively in 1986 and 1990 in the
field of Digital Communication Systems and Data
Communication. From 1990-2006, Professor
Siddeeq worked with the University of Technology
in Baghdad with participation in most of Baghdad’s

universities. From Feb. 2006 to July 2011, he was a Dean of Engineering
College at the Gulf University in Bahrain. From Oct. 2011-Sep. 2015 he
joined the University of Mosul, College of Electronic Engineering as a
Professor of Data Communication and next Dean of Research and
Graduate Studies at Applied Science University, Bahrain till Sep. 2017.
Presently, he is a quality assurance advisor at Duhok Polytechnic
University, Duhok, Irag. Through his academic life, he published over
100 papers and a patent in the field of data communication, computer.
Networking and information security and supervised over 100 Ph.D. and
MSc research students. He won the first- and second-best research in
Information Security by the Arab Universities Association in 2003.

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2740

European Journal of Engineering and Technology Research
ISSN: 2736-576X

Vol 7 | Issue 2 | March 2022

