Technological Review of Tubular Daylight Guide System from 1982 to 2020
Article Main Content
T.D.G.S., “Tubular Daylight Guidance Systems”, are natural lighting processes based on the transport of light. In 1990, they were judged by Littlefair as the most innovative technology in daylighting [1]. From 1982 to 2020, this paper is a state of the art on the different processes of tubular daylight guide systems. The key words used to carry out the census are light pipe; light tube; light guide; sun pipes; solar pipes; solar light pipes; daylight pipes; tubular skylight; sun scoop; tubular daylighting device; tubular daylight guide systems; mirrored light pipe. A classification by type of process is proposed (collection, transport or diffusion) for each technology identified in the literature.
References
-
P. J. Littlefair, « Review Paper: Innovative daylighting: Review of systems and evaluation methods », Light. Res. Technol., vol. 22, no 1, p. 1‑17, mars 1990.
Google Scholar
1
-
J. T. Kim et G. Kim, « Overview and new developments in optical daylighting systems for building a healthy indoor environment », Build. Environ., vol. 45, no 2, p. 256‑269, févr. 2010.
Google Scholar
2
-
X. Zhang, T. Muneer, et J. Kubie, « A design guide for performance assessment of solar light-pipes », Light. Res. Technol., vol. 34, no 2, p. 149‑168, juin 2002.
Google Scholar
3
-
D. Jenkins et T. Muneer, « Light-pipe prediction methods », Appl. Energy, vol. 79, no 1, p. 77‑86, sept. 2004.
Google Scholar
4
-
S. Darula, M. Kocifaj, R. Kittler, et F. Kundracik, « Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method », Sol. Energy, vol. 84, no 12, p. 2112‑2119, déc. 2010.
Google Scholar
5
-
D. J. Carter, « The measured and predicted performance of passive solar light pipe systems », Light. Res. Technol., vol. 34, no 1, p. 39‑51, 2002.
Google Scholar
6
-
Y. Wu, R. Jin, D. Li, W. Zhang, et C. Ma, « Experimental investigation of top lighting and side lighting solar light pipes under sunny conditions in winter in Beijing », présenté à International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications, 2008, p. 71571O‑71571O‑6.
Google Scholar
7
-
C. Baroncini, O. Boccia, F. Chella, et P. Zazzini, « Experimental analysis on a 1:2 scale model of the double light pipe, an innovative technological device for daylight transmission », Sol. Energy, vol. 84, no 2, p. 296‑307, févr. 2010.
Google Scholar
8
-
T. Taengchum, S. Chirarattananon, R. H. B. Exell, et P. Chaiwiwatworakul, « Tracing of daylight through circular light pipes with anidolic concentrators », Sol. Energy, vol. 110, p. 818‑829, déc. 2014.
Google Scholar
9
-
M. G. Nair, « Performance studies of anidolic concentrator with light pipes for day lighting in buildings », International Journal of Scientific & Engineering Research, vol. 5, no 7, 2014.
Google Scholar
10
-
G. Courret, « Systèmes anidoliques d’éclairage naturel », EPFL, 1999.
Google Scholar
11
-
S. C. Molteni, G. Courret, B. Paule, L. Michel, et J. L. Scartezzini, « Design of anidolic zenithal lightguides for daylighting of underground spaces », Sol. Energy, vol. 69, p. 117–129, 2001.
Google Scholar
12
-
M. Roshan et A. S. Barau, « Assessing Anidolic Daylighting System for efficient daylight in open plan office in the tropics », J. Build. Eng., vol. 8, p. 58‑69, déc. 2016.
Google Scholar
13
-
F. Binarti et P. Satwiko, « Long-term Monitoring and Simulations of the Daylighting and Thermal Performance of an Anidolic Daylighting System on a Tropical Urban House », Energy Procedia, vol. 78, p. 1787‑1792, nov. 2015.
Google Scholar
14
-
J.-L. Scartezzini et G. Courret, « Anidolic daylighting systems », Sol. Energy, vol. 73, no 2, p. 123‑135, août 2002.
Google Scholar
15
-
F. Linhart, S. K. Wittkopf, et J.-L. Scartezzini, « Performance of Anidolic Daylighting Systems in tropical climates – Parametric studies for identification of main influencing factors », Sol. Energy, vol. 84, no 7, p. 1085‑1094, juill. 2010.
Google Scholar
16
-
G. Courret, J.-L. Scartezzini, D. Francioli, et J.-J. Meyer, « Design and assessment of an anidolic light-duct », Energy Build., vol. 28, no 1, p. 79‑99, août 1998.
Google Scholar
17
-
A. Rosemann, M. Mossman, et L. Whitehead, « Development of a cost-effective solar illumination system to bring natural light into the building core », Sol. Energy, vol. 82, no 4, p. 302‑310, avr. 2008.
Google Scholar
18
-
T. Russell, P. Duvall, et S. Davies, « An Investigation Into Renewable Energy: The Solar Canopy Illumination System », nov. 2010.
Google Scholar
19
-
A. A. Earp, G. B. Smith, J. Franklin, et P. Swift, « Optimisation of a three-colour luminescent solar concentrator daylighting system », Sol. Energy Mater. Sol. Cells, vol. 84, no 1‑4, p. 411‑426, oct. 2004.
Google Scholar
20
-
B. C. Rowan, L. R. Wilson, et B. S. Richards, « Advanced Material Concepts for Luminescent Solar Concentrators », IEEE J. Sel. Top. Quantum Electron., vol. 14, no 5, p. 1312‑1322, sept. 2008.
Google Scholar
21
-
N. Aste, L. C. Tagliabue, P. Palladino, et D. Testa, « Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index », Sol. Energy, vol. 114, p. 174‑182, avr. 2015.
Google Scholar
22
-
A. Reinders, M. G. Debije, et A. Rosemann, « Measured Efficiency of a Luminescent Solar Concentrator PV Module Called Leaf Roof », IEEE J. Photovolt., vol. 7, no 6, p. 1663‑1666, nov. 2017.
Google Scholar
23
-
V. Duc Hien et S. Chirarattananon, « Daylighting through Light Pipe for Deep Interior Space of Buildings with Consideration of Heat Gain », p. 461‑475, 2007.
Google Scholar
24
-
V. D. Hien et S. Chirarattananon, « An experimental study of a facade mounted light pipe », Light. Res. Technol., vol. 41, no 2, p. 123‑142, juin 2009.
Google Scholar
25
-
I. R. Edmonds, G. I. Moore, G. B. Smith, et P. D. Swift, « Daylighting enhancement with light pipes coupled to laser-cut light-deflecting panels », Light. Res. Technol., vol. 27, no 1, p. 27‑35, mars 1995.
Google Scholar
26
-
I. R. Edmonds, P. A. Jardine, et G. Rutledge, « Daylighting with angular-selective skylights: Predicted performance », Light. Res. Technol., vol. 28, no 3, p. 122‑130, sept. 1996.
Google Scholar
27
-
I. R. Edmonds, J. Reppel, et P. Jardine, « Extractors and emitters for light distribution from hollow light guides », Light. Res. Technol., vol. 29, no 1, p. 23‑32, mars 1997.
Google Scholar
28
-
Garcia Hansen, V., Edmonds, I., et Bell, J. M., « Improving Daylighting Performance of Mirrored Light Pipes », présenté à PLEA2009 - 26th Conference on Passive and Low Energy Architecture, Quebec City, Canada, 2009.
Google Scholar
29
-
V. Garcia Hansen et I. Edmonds, « Natural illumination of deep-plan office buildings : light pipe strategies », in Faculty of Built Environment and Engineering; Faculty of Science and Technology; School of Design, Göteborg, Sweden, 2003.
Google Scholar
30
-
M. G. Nair, A. R. Ganesan, et K. Ramamurthy, « Daylight enhancement using laser cut panels integrated with a profiled Fresnel collector », Light. Res. Technol., p. 1477153514556524, oct. 2014.
Google Scholar
31
-
B. Malet-Damour, S. Guichard, D. Bigot, et H. Boyer, « Study of tubular daylight guide systems in buildings: Experimentation, modelling and validation », Energy Build., vol. 129, p. 308‑321, oct. 2016.
Google Scholar
32
-
B. Malet-Damour, H. Boyer, S. Guichard, et F. Miranville, « Performance Testing of Light Pipes in real weather conditions for a confrontation with Hemera », présenté à ICRET 2014, Hong Kong - Chine, 2014.
Google Scholar
33
-
D. Jenkins et T. Muneer, « Modelling light-pipe performances—a natural daylighting solution », Build. Environ., vol. 38, no 7, p. 965‑972, juill. 2003.
Google Scholar
34
-
L. Shao, A. A. Elmualim, et I. Yohannes, « Mirror lightpipes : Daylighting performance in real buildings », Light. Res. Technol., vol. 30, no 1, p. 37‑44, mars 1998.
Google Scholar
35
-
C.-Y. Lee, P.-C. Chou, C.-M. Chiang, et C.-F. Lin, « Sun tracking systems: a review », Sensors, vol. 9, no 5, p. 3875‑3890, 2009.
Google Scholar
36
-
A. Rosemann et H. Kaase, « Lightpipe applications for daylighting systems », Sol. Energy, vol. 78, no 6, p. 772‑780, juin 2005.
Google Scholar
37
-
J. Song, G. Luo, L. Li, K. Tong, Y. Yang, et J. Zhao, « Application of heliostat in interior sunlight illumination for large buildings », Renew. Energy, vol. 121, p. 19‑27, juin 2018.
Google Scholar
38
-
G. Luo, L. Li, J. Wang, W. Wang, J. Song, et Y. Yang, « A heliostat integrated with a sun-position sensor for daylighting », Energy Procedia, vol. 158, p. 394‑399, févr. 2019.
Google Scholar
39
-
[40] W. R. McCluney, L. Kinney, et J. Hutson, « Tracking Solar Lighting System for Core Building Spaces and Underground Ones », in Light, Energy and the Environment (2017), paper RW4A.3, 2017, p. RW4A.3.
Google Scholar
40
-
M. Mayhoub et D. Carter, « Hybrid lighting systems: Performance and design », Light. Res. Technol., vol. 44, no 3, p. 261‑276, sept. 2012.
Google Scholar
41
-
J. Schuman, F. Rubinstein, K. Papamichael, L. Beltran, E. Lee, et S. Selkowitz, « Technology Reviews: Daylighting Optical Systems », 1992.
Google Scholar
42
-
[L. A. Whitehead, R. A. Nodwell, et F. L. Curzon, « New efficient light guide for interior illumination », Appl. Opt., vol. 21, no 15, p. 2755‑2757, août 1982.
Google Scholar
43
-
O. Dobrre et G. Achard, « Optical simulation of lighting by hollow light pipes », présenté à Ninth International IBPSA Conference, Montréal, Canada, 2005, p. 263‑270.
Google Scholar
44
-
D. Vazquez-Molini, A. Alvarez, et B. Garcia-Fernandez, « Natural Lighting Systems Based on Dielectric Prismatic Film », in Dielectric Material, M. A. Silaghi, Éd. InTech, 2012.
Google Scholar
45
-
V. G. Hansen, « Innovative Daylighting Systems For Deep-Plan Commercial Buildings », Thèse Sci., School of Design Queensland University of Technology, 2006.
Google Scholar
46
-
A. A. Fernandez-Balbuena, Daniel Vazquez-Moliní, Berta García-Fernandez, Lucas García-Rodríguez, et Teresa Galán-Cañestro, « Daylight illumination system by vertical Transparent Prismatic Lightguide for an office building », présenté à Colour and Light in Architecture_First International Conference 2010_Proceedings, 2010, p. 360‑365.
Google Scholar
47
-
M. S. Mayhoub, « Fifty years of building core sunlighting systems – Eight lessons learned », Sol. Energy, vol. 184, p. 440‑453, mai 2019.
Google Scholar
48
-
Carter, « Developments in tubular daylight guidance systems », Build. Res. Inf., vol. 32, no 3, p. 220‑234, mai 2004.
Google Scholar
49
-
L. Audin, « Plasma lighting, fiber optics, and daylight collectors: Toward the next revolution in high-efficiency illumination », Strateg. Plan. Energy Environ., vol. 14, no 4, juin 1995.
Google Scholar
50
-
S. J. Oh, W. Chun, S. B. Riffat, Y. I. Jeon, S. Dutton, et H. J. Han, « Computational analysis on the enhancement of daylight penetration into dimly lit spaces: Light tube vs. fiber optic dish concentrator », Build. Environ., vol. 59, p. 261‑274, janv. 2013.
Google Scholar
51
-
J. Callow, « Daylighting Using Tubular Light Guide Systems », University of Nottingham, 2003.
Google Scholar
52
-
L. Shao et J. M. Callow, « Daylighting performance of optical rods », Sol. Energy, vol. 75, no 6, p. 439‑445, déc. 2003.
Google Scholar
53
-
G. Oakley, S. . Riffat, et L. Shao, « Daylight performance of lightpipes », Sol. Energy, vol. 69, no 2, p. 89‑98, 2000.
Google Scholar
54
-
I. Edmonds, « Transmission of mirror light pipes with triangular, rectangular, rhombic and hexagonal cross section », Sol. Energy, vol. 84, no 6, p. 928‑938, juin 2010.
Google Scholar
55
-
A. C. Oliveira, A. R. Silva, C. F. Afonso, et S. Varga, « Experimental and numerical analysis of natural ventilation with combined light/vent pipes », Appl. Therm. Eng., vol. 21, no 18, p. 1925‑1936, déc. 2001.
Google Scholar
56
-
S. Varga et A. C. Oliveira, « Ventilation terminals for use with light pipes in buildings: a CFD study », Appl. Therm. Eng., vol. 20, no 18, p. 1743‑1752, déc. 2000.
Google Scholar
57
-
R. Canziani, F. Peron, et G. Rossi, « Daylight and energy performances of a new type of light pipe », Energy Build., vol. 36, no 11, p. 1163‑1176, nov. 2004.
Google Scholar
58
-
S. Chirarattananon, S. Chedsiri, et L. Renshen, « Daylighting through light pipes in the tropics », Sol. Energy, vol. 69, no 4, p. 331‑341, 2000.
Google Scholar
59
-
S. Wittkopf et al., « Ray tracing study for non-imaging daylight collectors », Sol. Energy, vol. 84, no 6, p. 986‑996, juin 2010.
Google Scholar
60
-
C. Kwok, « A study of horizontal light pipe system for interior daylighting in a dense urban environment », Thesis, The Hong Kong Polytechnic University, 2011.
Google Scholar
61
-
C. M. Kwok et T. M. Chung, « Computer simulation study of a horizontal light pipe integrated with laser cut panels in a dense urban environment », Light. Res. Technol., vol. 40, no 4, p. 287‑305, déc. 2008.
Google Scholar
62
-
M. J. Ayers et D. J. Carter, « Remote source electric lighting systems: A review », Light. Res. Technol., vol. 27, no 1, p. 1‑15, mars 1995.
Google Scholar
63
-
J. Mohelnikova, « Tubular light guide evaluation », Build. Environ., vol. 44, no 10, p. 2193‑2200, oct. 2009.
Google Scholar
64
-
I. Visa et A. Duta, Nearly Zero Energy Communities: Proceedings of the Conference for Sustainable Energy (CSE) 2017. Springer, 2017.
Google Scholar
65
-
M. S. Mayhoub, « Innovative daylighting systems’ challenges: A critical study », Energy Build., vol. 80, p. 394–405, 2014.
Google Scholar
66
-
Malet-Damour B, Bigot D, Guichard S, Boyer H. Photometrical analysis of mirrored light pipe: From state-of-the-art on experimental results (1990–2019) to the proposition of new experimental observations in high solar potential climates. Sol Energy 2019;193:637–53. doi:10.1016/j.solener.2019.09.082.
Google Scholar
67
Most read articles by the same author(s)
-
Simon Mark,
Harry Boyer,
Spatial Limit of CFD Model at Nanometer Scale Geometry: Part I: Capillary Flow , European Journal of Engineering and Technology Research: Vol. 5 No. 7: JULY 2020